Tracing multiscale mechanisms of drug disposition in normal and diseased livers.
نویسندگان
چکیده
Hepatic drug disposition is different in normal and diseased livers. Different disease types alter disposition differently. What are the responsible micromechanistic changes and how do they influence drug movement within the liver? We provide plausible, concrete answers for two compounds, diltiazem and sucrose, in normal livers and two different types of cirrhotic rat livers: chronic pretreatment of rats with carbon tetrachloride (CCl(4)) and alcohol caused different types of cirrhosis. We started with simulated disposition data from normal, multilevel, physiologically based, object-oriented, discrete event in silico livers (normal ISLs) that validated against diltiazem and sucrose disposition data from normal livers. We searched the parameter space of the mechanism and found three parameter vectors that enabled matching the three wet-lab data sets. They specified micromechanistic transformations that enabled converting the normal ISL into two different types of diseased ISLs. Disease caused lobular changes at three of six levels. The latter provided in silico disposition data that achieved a prespecified degree of validation against wet-lab data. The in silico transformations from normal to diseased ISLs stand as concrete theories for disease progression from the disposition perspective. We also developed and implemented methods to trace objects representing diltiazem and sucrose during disposition experiments. This allowed valuable insight into plausible disposition details in normal and diseased livers. We posit that changes in ISL micromechanistic details may have disease-causing counterparts.
منابع مشابه
Computational strategies unravel and trace how liver disease changes hepatic drug disposition.
Liver disease changes the disposition properties of drugs, complicating drug therapy management. We present normal and "diseased" versions of an abstract, agent-oriented In Silico Livers (ISLs), and validate their mechanisms against disposition data from perfused normal and diseased rat livers. Dynamic tracing features enabled spatiotemporal tracing of differences in dispositional events for di...
متن کاملAgent-Directed Tracing of Multi-Scale Drug Disposition Events within Normal and Diseased In Silico Livers
Cirrhosis, a chronic liver disease, alters hepatic drug disposition; however, little is known about micromechanisms underpinning disease progression and how they contribute to changes in liver disposition properties. In this article, the authors present multilevel, agent-based and agent-directed In Silico Livers (ISLs) to probe plausible micro-mechanistic details for a cationic drug, diltiazem,...
متن کاملExpression of Drug Pump Protein MRP2 in Lipopolysaccharide-Treated Rats and Its Impact on the Disposition of Acetaminophen
The drug pump protein MRP2 is a membrane drug efflux transporter widely distributed in normal and tumor tissues. Its role is thought to be crucial for the disposition of many drugs and their substrates in different tissues. In this study, we aimed to examine the effects of systematic inflammation induced by lipopolysaccharide (LPS) on the expression and function of this transporter in rats. Jug...
متن کاملExpression of Drug Pump Protein MRP2 in Lipopolysaccharide-Treated Rats and Its Impact on the Disposition of Acetaminophen
The drug pump protein MRP2 is a membrane drug efflux transporter widely distributed in normal and tumor tissues. Its role is thought to be crucial for the disposition of many drugs and their substrates in different tissues. In this study, we aimed to examine the effects of systematic inflammation induced by lipopolysaccharide (LPS) on the expression and function of this transporter in rats. Jug...
متن کاملCationic drug pharmacokinetics in diseased livers determined by fibrosis index, hepatic protein content, microsomal activity, and nature of drug.
The disposition kinetics of six cationic drugs in perfused diseased and normal rat livers were determined by multiple indicator dilution and related to the drug physicochemical properties and liver histopathology. A carbon tetrachloride (CCl(4))-induced acute hepatocellular injury model had a higher fibrosis index (FI), determined by computer-assisted image analysis, than did an alcohol-induced...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 334 1 شماره
صفحات -
تاریخ انتشار 2010